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Introduction  

This supplement presents further details on the development of the methods in 
order to better allow reproduction of the scientific method and justify the decisions 
made to quantify uncertainty in the SOM-FFN air-sea flux dataset. Additionally, it 
includes Figure S1, which provides the spatial spread of the available observations 
which drive our SOM-FFN data product. 

Text S1. 
In order to develop our overall equation, we combine two different sources of 

uncertainty: the systematic (i.e. µ) and random (i.e. s) terms. To do this, we utilize 
statistical methods and incorporate based on the linear model (e.g. Peterson et al, 2001), 
where the two fundamental terms are combined in the form: 

TE = |bias| + z*s 
Where z represents how many standard deviations the value is away from the mean 

(Illowsky and Dean, 2013), and s represents our uncertainty, in this case, the three 
independent sources of uncertainty which we combine in quadrature to calculate total 
sum. In our analysis, we use one standard deviation, so z=1. This leads to the equation 3 
in the main text showing total error, although we always consider the error sources 
individually for the application of this analysis.  

Our three independent sources of uncertainty include spco2, sk, and swind (See 
equation 3). (k) is the gas exchange transfer velocity of CO2 normalized to a temperature 
of 20°C (for a sea surface salinity of 35). For sk, we selected four of the most commonly 
used parameterizations of k: Wanninkhof et al. 2014, Ho et al., 2006, Takahashi et al 
2009, and Sweeney et al., 2007. Each of these are quadratic approaches with variations in 
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their k-parameterization equations, further broken down and discussed in Roobeart et 
al., 2018. While there have been studies suggesting different parameterizations might be 
more appropriate under specific conditions such as high wind speeds, recent 
measurements imply quadratic parameterizations fit the observations best even at high-
speed wind environments (Butterworth and Miller, 2016; Wanninkhof et al., 2014). 

The dominant hydrodynamic factor that controls the turbulence at the air-sea 
interface and therefore is one of the key factors causing uncertainty in our kw of the open 
ocean is wind stress (Sarmiento and Gruber, 2006). Therefore, our third s is uncertainty 
stemming from choice of wind product. We selected from the most frequently used 
global wind products that covered our full time period of analysis, 1982-2022. This 
included three products: ERA 5 Global Reanalysis (Hersback et al., 2020), NCEP/DOE 
Reanalysis II (Kanamitsu et al., 2002), and NCEP-NCAR Reanalysis 1 (Kanlay et al., 1996). 
ERA5 is a reanalysis dataset that combines a weather model with observational satellite 
and ground data in order to provide gridded, hourly datasets. To ensure 1°x1° spatial 
resolution, we use cell aggregation to process it, since it has a finer spatial resolution 
(.25°x.25°). NCEP-NCAR 1 is a data assimilation, on a global T62 Gaussian grid. We use 
two-dimensional spine interpolation to translate to a continuous 1°x1° spatial field for 
both NCEP-NCAR 1 and NCEP/DOE Reanalysis II. NCEP/DOE Reanalysis II is based on 
NCEP-NCAR 1, with updated parameterizations for physical processes and fixed errors. 
Both products are unchanged for temporal resolution. Note that we do not tune the kw 
to individual wind parameterizations, as we are calculating uncertainty based on the 
spread between our runs, not the actual mean transfer velocity. 

Additional parameters that can be found in our flux equation (equations 1 and 2), 
such as fraction of sea ice, choice of SST product, atmospheric partial pressure of CO2, or 
solubility of CO2 in seawater can impact the flux, but on a global scale create negligible 
impacts than when compared with the parameters discussed above (Fay et al., 2021, 
Rooabert et al., 2019), and so were not included in this analysis.  
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Figure S1. Surface Ocean CO2 Atlas (SOCAT) observations averaged over time from 
1982-2022. (a) shows averaged pCO2 (uatm). (b) displays numbers of observations at 
each gridpoint. These figures incorporate data generously provided by the contributors 
and investigators who are a part of SOCAT (Bakker et al., 2016). 
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